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Abstract. Intelli gent Networks are used by telephony systems to offer services
to customers. The creation of these services has traditionally been performed by
hand, and has required substantial effort, despite the advanced tools employed.
An alternative to manual service creation using Genetic Programming is
proposed that addresses some of the limitations of the manual process of service
creation. The main benefit of using GP is that by focussing on what a service is
required to do, as opposed to it’s implementation, it is more li kely that the
generated programs wil l be available on time and to budget, when compared to
traditional software engineering techniques. The problem of closure is tackled
by presenting a new technique for ensuring correct program syntax that
maintains genetic diversity.

1 Introduction to Intelli gent Networks

Traditional telephony in the past 20 years has concentrated on delivering telephony
services to customers by means of stored program switches. Customers have, until
recently, been restricted to relatively crude terminal equipment that supports voice
and Dual Tone Multi Frequency (DTMF) user controls. A simpli fied view of this
traditional system is shown in Figure 1.
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Figure 1 Traditional telephone system



The switches control the call s made by the subscribers. All the services such as
ring back when free, are implemented in the switches. However, the time required to
implement new services is in the order of 1 to 2 years (for example see [3]) because
the services are tied closely to the switch development li fecycle.

As the number of services offered has grown and the sophistication of telephone
equipment has risen, it has become clear that offering services via the traditional
embedded switch technology does not scale well, and that other platforms for
providing the services are required. The alternative is to move the services off the
switches onto standard computing platforms. This is the Intell igent Network (IN)
solution.
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The basic intelligent network is shown in Figure 2. Here it can be seen that the
switches have been expanded to communicate with other network elements. The
Service Switching Point (SSP) handles the interface between the telephone switch and
the Intelligent Network. The interface uses a standardized Intelligent Network
Application Part (INAP) which is carried over the standard Signaling System number
7 (SS7) network. In the Intelligent Network, the services are hosted on a Service
Control Point (SCP). This is typically a number of high end UNIX servers. The SCP
uses a Service Data Point (SDP ) to store data, for example, numbers required to
implement a FreePhone service. The system is managed by a Service management
Point (SMP). Finally, to enable the rapid creation and deployment of services, a
Service Creation Environment (SCE) is used to build, test and deploy services to the
network.

The primary objective of Intelligent Networks (IN) then is to move the service
computation from the embedded switches to readily available computers to gain the
benefits of mainstream IT techniques.

A secondary aim of introducing IN is to reduce the time required to develop and
deploy new services. As already mentioned, traditional switch based solutions
typicall y require 2 years from the initial requirements being specified until the service



is in operation. In a highly competitive environment this is too long, and the market
window will have disappeared by the time the services come into operation. IN aims
to reduce this to around 6 months by exploiting mainstream IT techniques.

In order to achieve such a startling reduction in timescales, new methods of
creating service applications were required. From this followed the introduction of the
SCE, or Service Creation Environment Function.

Experience has shown that the time required to capture the requirements and create
an outline of the service is relatively short, but the time required to implement and test
the low level details of complex services can be several months. A typical non-trivial
service can require several hundred icons, and results in dozens of valid traversals of
the graph. A means of reducing the duration of the detailed engineering phase is
therefore of benefit to the network and service operators.

1.1 An Alternative approach to Service Creation

The major problems encountered in the existing system are associated with
software engineering management issues namely, productivity and quality control.
Despite the promises of the early IN systems and the advanced tools available,
complex services still take a considerable amount of time to develop using traditional
software engineering techniques and there are stil l some defects found in the services
themselves [2].

This work attempts to address the difficulties associated with the detailed
engineering phase of service development, by means of automaticall y deriving an
implementation from the requirements, or as Langdon [19] and others put it, by using
Automatic Programming. This approach was hinted at by Boehm [5] Chap. 33 which
mentions automatic programming. In 1981 the idea was considered interesting but
‘somewhat beyond the current frontier of the state of the art’ . This paper demonstrates
that automatic programming by using Genetic Programming (GP) is now a viable
alternative in the domain of IN.

To be able to judge whether an alternative approach to manual programming is
worthwhile a number of questions need to be answered with regards to the alternative:

1. Has the alternative approach demonstrated that it can generate programs that
perform as well as or better than a human?

2. In the domain being considered what are the observable and measurable attributes
of the process of generating programs?

3. What are the observable and measurable attributes of the generated programs ?
4. Can it handle the range of program complexity that a human can; i.e.; is it

scalable?

Firstly, GP has demonstrated that it can produce results that are at least as good as
a human programmer and in some cases provide solutions to problems that a human
has not been able to achieve as in the case of discovering an electronic circuit to yield
a cube root function by Koza et al[15] and Sharman et al [25] has also shown that
programs for Digital Signal Processors (DSPs) evolved using GP can outperform
existing programs. Clearly then GP has the potential to generate programs that
humans find hard.



Secondly, we can consider an existing service creation case study [2]. This study
showed that for a complex service a team of engineers required 4.5 Man years of
effort to analyse, design, code and test the service. A significant measurable attribute
is therefore the elapsed time required to implement the service and this attribute will
be quantified for GP by experimental data presented later. Other attributes are cost of
equipment and the degree of human intervention but are not considered further in this
work.

Thirdly, a key measurable attribute of the program is the level of defects. Broadly
defects fall into one of two categories according to Sommerville [26]; errors due to
incorrect requirements analysis and errors due to implementation deficiencies either
by errors in programming or design. The first type is common to whatever method of
programming is adopted. As summarised by Davis [8] the earlier that requirement
related errors are found, the lower the cost to remedy the error. As will be seen later
using GP forces the designer to consider requirements in more detail initially (for
fitness evaluation) so the implication is that using GP will result in fewer errors
introduced by faults in the requirements. Again the study by Boulton et al shows that
even using advanced tools such as INventor, there were 15 failures associated with
the service. Anecdotal evidence suggests that these were all implementation errors.

Lastly, the question of whether GP can scale can only be answered in full by
analysing experimental data, but initial indications show that GP can create programs
to solve complex problems in other domains.

2 Applying GP to Service Creation

2.1 Functions and Terminals

Classical tree based GP [16] requires a set of functions which form the non-leaf
nodes in the tree and terminals which form the leaf nodes of the tree. The set of
functions and terminals must satisfy the closure and sufficiency properties. Terminals
may be side affecting or yield data. For this work, the functions were chosen to
perform all external operations, while the terminals were chosen to yield data. In
order to arrive at a sufficient set of data types, it is useful to consider what types of
data are commonly encountered in telephony services. Table 1 summarizes these data
types.

Table 1 Data types encountered in telephony services

Data Type Comments
Telephone numbers Strings of digits [0-9 # *] that can be dissected and

concatenated. The string length may be up to 24
bytes.

Constant integral values Used for counters and message parameter values
Boolean values Flags and status values
Message types An enumerated set used to distinguish messages



From this it is clear that restricting functions and terminals to use a single data type
in order to satisfy the closure property is not feasible. In addition, since most IN
services require some state information to be stored between messages, a mechanism
for saving state information is required. The first approach to this requirement,
Indexed Memory, was suggested by Teller [2] where he argues that in order for GP to
be able to evolve any conceivable algorithm, GP needs to be Turing Complete and
that addressable memory enables this. A useful side effect of this is that memory also
allows state information to be explicitly saved and retrieved.

Of course other approaches to saving state information are possible as for example
in the work by Angeline [1] that uses Multiple Interacting Programs (MIPS).
However for the purposes of this work Indexed Memory was chosen since it was
thought that it would be easier to analyse the operation of the evolving programs.

2.2 Achieving Closure

Several methods have been proposed to ensure that the closure property is
maintained during initial creation and subsequent reproduction. This may be achieved
in a number of ways. Firstly Koza [16] restricts the types of arguments and functions
to compatible types. For instance, all floating point types as in the symbolic
regression examples or logical in the Boolean examples. For simple problems with
single data types this is sufficient.

Secondly, in strongly typed approaches such as those described by Montana [22]
and Haynes et al [18] constraints are placed on the creation of individuals to satisfy
the type rules. The advantage here is reducing the size of the search space by
eliminating individuals that would fail due to syntax errors. Clack [6] extended this
work to show that expression based parse trees can yield more correct programs, and
introduced the idea of polymorphism into the data types.

An alternative to the strongly typed approach is proposed in this work, based on
polymorphic data types with independent values for each type supported.

This approach was devised as an alternative to the strongly typed methods by
making the observation that it is possible that the criteria used to decide what is a
correct program has more to do with correctness as seen by a human programmer
rather than any inherent property of GP. In other words, strong typing is a useful
artifact of languages used by humans to help ease the burden on the programmer, by
means of assisting machine interpretation. Perkis [2] has shown that an apparently
haphazard mechanism in the form of a stack can yield useful results. Another
objection to using a strongly based type system was that the potential number of
solutions could be greatly diminished and biased , since the search space is
constrained.

The work presented here uses a new data type termed Autonomous Polymorphic
Addressable Memory (APAM). This consists of a set of memory locations
M={ L1,…Ln} which can be addressed randomly or by name. Each location is a set of
data items of different types L={ d1,…dn} . The values of Ln.d1, Ln.d2 etc are
independent of each other. Selection of the correct type and therefore value is
performed by any function that is passed a memory reference as an argument. An
example of the use of this structure is when a program needs both integer and real



values. Each location L would contain an integer data type and a floating point data
type.

Memory M
L1 … Ln

d1 d2 d3 d1 d2 D3

Figure 3 Layout of Autonomous Polymorphic Addressable Memory

To support this memory architecture, the terminal set T consists of memory nodes
T={TVAR1,…TVARn} . Each node returns a reference to memory location Ln. and can
be passed as arguments to any function.

It should be noted that this is not the same as using a generic data type where a data
item is coerced into the correct type at run time. A difficulty with coercion is that
many automatic conversions are meaningless. For example, in the context of
telephony it would be hard to imagine what the coercion of a Boolean value into a
telephone number would mean.

2.3 Choosing a level of abstraction

Suff iciency is a problem specific attribute. In the domain of IN, there are three
main levels of abstraction that can be considered. This li st does not include low-level
functions, for instance the UNIX API, or raw machine language, though the latter is
clearly feasible as demonstrated by the use of Java byte code as the working set for C
as described by Banzhaf et al [4]:

1. Icon level with attributes as terminals. This level is based on the set of functions
offered to service creators using the GPT GAIN INventor  product [2]. Other
service creation systems have similar or even higher level of abstraction. A subset
of around twenty icons is sufficient to construct the majority of services
encountered in existing networks.

2. Icon function level. This is the level used by the internal tools within GAIN
INventor . Each icon typically makes use of between one and twenty functions.
The total number of functions is around 200.

3. API level. This is the lowest practical level. This is the set of API functions offered
by the target platform. In the case of the GPT GAIN INventor () product, this is a
set of over one hundred and fifty function call s designed to allow services and
other applications to be constructed.

For these experiments, the level was initially pitched at the ICON level since this
level allows humans to create production quality services. An attempt was made to
see if this level of abstraction was optimal by carrying out additional experiments
using a level closer to the API. Initial results indicate that using the ICON level may
not be the most effective.



The functions chosen for the initial experiments are shown in Table 2

Table 2. Functions for high level abstraction

FSTART Takes two arguments. It accepts an IDP message from the SSP and
the calledDN value is stored at the location returned as a result of
evaluating it’s first parameter.

FDBREAD This reads a data base, using the value of the first argument as a key
and placing the result in the location returned as a result of
evaluating it’s second parameter

FROUTE Evaluates the first argument which is used to furnish the new routed
number for the connection message.

FEND Sends a pre-arranged end to the SSP.
STRSUB Performs a simple string shift operation to simulate real-li fe number

manipulations.
For the lower level abstraction, the functions were:

Table 3. Functions for low level abstraction

ReadMSG: Accepts a message from the SSP or SDP and places the parameters
into variables.

SendMSG Takes a number of parameters and builds a message which is then
sent to the SSP or SDP.

STRSUB Operates as already described

The system supports five message types analogous to the real world Intell igent
Network Application Part (INAP) and SDF operations. These are InitialDP which is
generated by the SSP as a result of a trigger detection point being activated by a call,
DB_REQUEST which issues a database request, DB_RESPONSE which accepts a
data base response, Connect which is an instruction from the SCF to the SSP to
connect party A to party B, and END which terminates a service dialogue.

2.4 The Fitness Function for Service Creation

The decision was made to measure the fitness of the GP at the external INAP
interface since this is a standardized external interface as described in Q.1211  [12]
and would allow the specification of services to be performed at the network level.
This led to the use of Message Sequence Charts (MSCs) for deriving the fitness
function. MSCs are commonly used in telecommunication system work for specifying
system behaviour.

The Basic Call State Machine (BCSM) described in Q.1214 [13] is simpli fied, and
called a Simple Call State Model (SCSM) in order to focus on the GP technique rather
than being distracted by the complexities of the BCSM.

When running a fitness test, two related problem specific measures are used to
determine how fit an individual is, as well as non-problem specific measures such as
parsimony:



1. The number of correct state transitions made. Each correct transition is rewarded
with a value of 100. Each incorrect transition is penalized with a value of -20. The
reward and penalty values are summed. This value is called s.

2. The number of correct parameter values passed back to the SCSM. A correct
parameter value is rewarded with a value of 100, and each incorrect value is
penalized with a value of -20. The reward and penalty values are summed. This
value is called p. These values are then used to compute a normalized fitness value
as follows:

Raw fitness r  is given by r =s+p
Normalized fitness n is given by n=k –r  where k is a constant that is dependent on

the number of state transitions and message parameters in the problem being
considered, such that for a 100% fit individual n=0.

A count is maintained of the number of correct and incorrect state transitions and
correct and incorrect message parameter values to help with an analysis of the
performance of GP.

2.5 Measuring performance and estimating effor t

Additional information collected includes the total wall clock time taken for each
run, the number of individuals processed, the number of unique individuals that were
100% fit, the number of 100% individuals at the final generation and detail s of the
best individual of each run, including it’s size.

3 Example of a Service - Complex Number Translation

We can now look at one of the experiments carried out as part of this research [21].
Number translation was chosen for this example since although it is one of the
simpler services, it is also the most common service implemented using IN [9], and
forms the basis of many more complex services such as Freephone, Premium Rate
services and time based routing.

The experiment uses GP to evolve service logic for a number translation service
where two data base lookups are required. This scenario occurs in the real world
where a service requires two items of data in order to route a call. For example, a
service may need to route to one number during working hours and another number
during out of work hours.

For this experiment the population was set at 500, the number of generations was
set at 200. These figures were arrived at after a number of trial runs using a wide
range of values for the population size and number of generations. When this problem
was run 50 times, GP created a 100% correct program 49 times. The probabil ity of
finding a correct solution at generation 200 was 72%.

Some interesting results were observed during this experiment. Firstly all 49
correct programs were different. The differences ranged from the selection of
different variables to some counter intuitive program trees when compared to what a
human programmer might have written. One of the less intuitive programs is shown
in Figure 4. Note that the first function called is the route function, and the operation



relies purely on the ordering of evaluation of function arguments, rather than a
procedural sequencing more commonly found in human generated programs.

The number translation problem was performed twice, once using functions from
the high level abstraction set as already described and once using functions from the
lower level set. The use of the lower level abstraction system yielded solutions using
fewer generations than the higher-level abstraction system. After 200 generations the
probability of finding a 100% correct solution rose to 84%, compared to 74% for the
high level functions. Weighed against this faster convergence is the fact for a given
probability of finding a lower level abstraction, the low level functions required more
time to evolve primaril y due to the greater size of the program trees needed. An
example of a 100% correct program is shown in Figure 5.

An interesting feature of this particular example is the regularity with which the
pattern at nodes 3, 4, 5, 6 and 7 occur. This pattern is repeated at the subtrees rooted
at nodes 10 and 18. It is likely that using Automaticall y Defined Functions (ADFs)
[17] for this level of functions would be beneficial since there are repeating patterns
emerging. A possibility that was not explored is that the common subtrees come from
a common ancestor formed early in the run.

<1>
FROUTE

<2>
FDBREAD

<3>
FDBREAD

<4>
FSTART

<5>
TVAR6

<6>
STRSUB

<7>
TVAR6

<8>
TVAR6

<9>
TVAR6

<10>
STRSUB

<11>
TVAR6

<12>
TVAR5

<13>
TVAR6

<14>
STRSUB

<15>
TVAR6

<16>
TVAR5

<17>
FEND

<18>
TVAR5

Figure 4 An example of a novel 100% correct program tree

3.1 



<1>
SENDMSG

<2>
TVAR3

<3>
STRSUB

<4>
READMSG

<5>
TVAR3

<6>
TVAR3

<7>
TVAR2

<8>
SENDMSG

<9>
TVAR3

<10>
STRSUB

<11>
READMSG

<12>
TVAR3

<13>
TVAR3

<14>
TVAR2

<15>
SENDMSG

<16>
SENDMSG

<17>
TVAR2

<18>
STRSUB

<19>
READMSG

<20>
TVAR3

<21>
TVAR3

<22>
TVAR2

<23>
TVAR5

<24>
TVAR2

<25>
TVAR3

Figure 5 Example program tree using reduced complexity functions

3.2 Compar ison of Performance Between High and Low Level Abstraction

Some additional measurements were taken to try to gauge the differences in the
time required to find a solution and the resulting complexity of the 100% correct
programs.

The average time for a run to complete is taken as the total wall clock time of the
experiment divided by the number of runs, which was 50 in each case. The wall clock
time is significant when trying to compare automatic programming as an alternative
to human programming.

Table 4 Summary of experiments and results

Average time per
run (secs)

Average Complexity
of f ittest

P(M,i)
%

R(z) εε

44 19 72 4 2,000
71 28 82 3 1,500

The average complexity is the sum of the complexity values of the fittest 100%
correct individuals in each run, divided by the number of runs that produced a 100%
correct individual. The complexity of an individual is simply the number of nodes in
that individual.

4 Analysis and Discussion

During the early part of the work, considerable time was spent trying different
combinations of the control parameters and the set arrived at for the experiments is
probably not optimal.

Two questions arise from this:



1. Is there an envelope of operation that gives good results?
2. Is it possible to determine all environment control values by some method?

It should also be noted, that although studies into different control parameter
values has some measurable effect on particular problems the scale of effect is often
small, and the universality of the effect is often limited, as for instance reported by
Goldberg [10] in his study on deme size, and the results presented as part of the GP
kernel [28]. These and other questions raises the point made by  Goldberg [11] that
unli ke GA there is no good theoretical basis for GP, and that until one is developed
we are reliant on empirical methods for determining the operational parameters for
GP.

The original choice of abstraction for the internal nodes gave satisfactory results,
but as shown in the second experiment, a lower level of abstraction gives a better
overall performance (higher probability of yielding a 100% correct program) using
the same basic system architecture, but required approximately 40% more processing
effort. Interestingly the average complexity of the reduced complexity experiment
was also approximately 40% greater than the standard experiment. This suggests there
may be a direct link between the two measures. Additionally, it is suggested that
using ADFs could well be useful in this case. Clearly more work is required in order
to arrive at an optimal level of abstraction.

The use of the Autonomous Polymorphic Addressable Memory System (APAMS)
was very powerful. It meant that evolving programs were not constrained in the shape
they took. The memory locations were used for several different purposes in the
experiments – targets for storing message parameters, both string and integer, and a
source for function arguments, and as a constant value as when used by some
examples using the FEQ function. In the last experiment they also contained message
types. Extension of APAMS would prove beneficial in future developments such as
using it to hold partial or complete messages.

APAMS also contributed to the great variety seen in the 100% correct solutions by
avoiding the need to restrict the semantic structure as in [22] and others. To examine
this claim, a simple hypothetical case can be considered, such as the FSTART
function. A strict typing of this by a human programmer during the early stages of
building a GP system could define this function returning a status, or particular
parameter to a calling function and having arguments of type DialledNumber for the
first and some other type for the second. Immediately it can be seen that by adding
these constraints, a human programmer imposes their own perceived structure on the
function and therefore its place in any tree. Doing this would preclude the example
solution illustrated in Figure 4 that started with the FROUTE function.

4.1 Per formance of GP Compared to a Human Programmer

In terms of raw performance, GP service creation compares well to a human
performing the same task, with GP taking minutes to find a 100% correct individual,
and a human taking around one hour to hand code a similar program and test it.
However a comparison made purely on time to complete a task does not tell the whole
story. In the case of GP, one of the important tasks of the fitness function is to rank
how well an individual is able to solve a problem. The fitness function could also be
the test case for the solution so a correct program could well be classified as 100%



tested, with the usual caveats concerning testing metrics. This is an appealing side
effect from using GP.

4.2 Software Engineer ing Considerations

For many years automatic program generation has been a goal of software
engineering. See for example [5]. GP at its current state of maturity goes some way to
achieving this goal. This could be viewed as a threat to traditional software
engineering, but such a narrow view misses the broader benefits of GP. GP offers an
alternative to the traditional coding phase of software development, facilitating the
creation of quali ty tested software. What remains of course are the essential activities
of requirements capture and system specification.

A comment often raised when evolutionary techniques are discussed is how we can
be sure that the evolved structures don’t have any hidden surprises. For example, that
a program may give erroneous results under a set of conditions that were not
expected. Apart from the fact that programs written by humans are themselves often
not free of hidden surprises, a strong argument against these objections is that every
individual is tested against the fitness function. Since the fitness function in effect
embodies the specification for the program, the fitness function can contain the test
cases required to ensure that the evolved program performs as required.

The opaqueness of machine generated programs can of course be considered to be
a positive attribute in that it forces the systems engineer to look more closely at the
specification and the associated system testing. A consequence of this is that the
systems engineer must specify exactly what the system should do, not as the
introduction to Koza’s third book [14] states ‘… a high level statement of the
requirements …’ .

This question concerning the opaqueness of programs generated using GP or other
EC techniques has inspired some work to try to address the perceived deficiency. For
instance Pringle [2] suggests an approach that tries to create programs that look like
those produced by a human programmer, while Langdon [19] has dedicated a whole
book to automatic programming adopting techniques used by human programmers as
building blocks. A potential flaw in this approach is that practices such as modularity,
data hiding, object oriented disciplines, data structures and other ‘good engineering
practices’ have been developed to aid human programmers in writing fault free and
maintainable software. They are not of themselves required for a program to be
correct and while the aforementioned work has delivered some useful techniques and
insights it does not address any of the essential features of GP. A counter argument
has been made by Blickle [3] pointing out that a clear structured program can give
valuable insights into the problem being solved. For example when trying to find an
analytical expression to diff icult integral equations, a clear analytic expression would
allow further investigation of the problem. However it is worth revisiting the original
inspiration for this work and noting that Darwin observed ‘nature cares nothing for
appearances, except so far as they may be useful to any being’ [7] (Chapter IV,
‘Natural Selection’ ).

Finally it is often remarked that understanding the evolved programs is often hard,
since the programs do not always adhere to what a human programmer might consider
good style. However, in a production environment it would be rare that an analytical
understanding of the program is required. In any case, software engineering is



currently happy to trust tools to generate code in other areas. A useful analogy here is
to consider how CASE tools and high-level language optimizing compilers have
replaced flow charts and hand crafted assembler code.

5 Conclusions

A new technique of achieving closure was developed that uses polymorphic data
types. The principle advantage of using this approach is to facil itate a more complete
search of the problem space by avoiding the selective search imposed by strongly
typed techniques.

Choosing two different levels of abstraction for the function set indicated that
selecting the optimum set of functions is not straightforward.

The level of defects in the generated application due to implementation errors is
zero due to the fitness evaluation applied to the application. The level of defects due
to errors in requirements should be reduced since more attention is needed at the
specification stage.

GP still requires a significant amount of effort from the system designer in
selecting a suff icient and appropriate set of functions and terminals, in selecting
suitable run-time parameters and in fine-tuning the system during the development of
useful programs.

This work has demonstrated that GP is a viable technique when applied to the
problem of service creation. While there are some limitations with the present
approach, ongoing research into GP is yielding better insights into the underlying
theory of operation, and is delivering GP systems that can handle more complex tasks.
Whether this application of GP is scalable to allow the creation of production quality
services is still an open question.
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